The General Solution of the Complex Monge-Ampère Equation in a space of arbitrary dimension

نویسنده

  • D. B. Fairlie
چکیده

A general solution to the Complex Monge-Ampère equation in a space of arbitrary dimensions is constructed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The General Solution of the Complex Monge-Ampère Equation in two dimensional space

The general solution to the Complex Monge-Ampère equation in a two dimensional space is constructed.

متن کامل

Complex Monge–Ampère equations and totally real submanifolds

We study the Dirichlet problem for complex Monge–Ampère equations in Hermitian manifolds with general (non-pseudoconvex) boundary. Our main result (Theorem 1.1) extends the classical theorem of Caffarelli, Kohn, Nirenberg and Spruck in Cn. We also consider the equation on compact manifolds without boundary, attempting to generalize Yau’s theorems in the Kähler case. As applications of the main ...

متن کامل

Singular Monge-ampère Foliations

This paper generalizes results of Lempert and Szöke on the structure of the singular set of a solution of the homogeneous Monge-Ampère equation on a Stein manifold. Their a priori assumption that the singular set has maximum dimension is shown to be a consequence of regularity of the solution. In addition, their requirement that the square of the solution be smooth everywhere is replaced by a s...

متن کامل

Local Regularity of the Complex Monge-Ampère Equation

Local Regularity of the Complex Monge-Ampère Equation Yu Wang In this thesis, we study the local regularity of the complex Monge-Ampère equation, (√ −1∂∂̄u )n = fdx where √ −1∂∂̄u stands for the complex Hessian form and dx the Lebesgue measure. The underline idea of our work is to consider this equation as a full-nonlinear equation and apply modern theory and techniques of elliptic PDEs. Our main...

متن کامل

Some Rigidity Results Related to Monge-ampère Functions

The space of Monge-Ampère functions, introduced by J. H. G. Fu in [7, 8] is a space of rather rough functions in which the map u 7→ Det D is well-defined and weakly continuous with respect to a natural notion of weak convergence. We prove a rigidity theorem for Lagrangian integral currents that allows us to extend the original definition of Monge-Ampère functions given in [7]. We also prove tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008